In Vivo Mutational Characterization of DndE Involved in DNA Phosphorothioate Modification
نویسندگان
چکیده
DNA phosphorothioate (PT) modification is a recently identified epigenetic modification that occurs in the sugar-phosphate backbone of prokaryotic DNA. Previous studies have demonstrated that DNA PT modification is governed by the five DndABCDE proteins in a sequence-selective and RP stereo-specific manner. Bacteria may have acquired this physiological modification along with dndFGH as a restriction-modification system. However, little is known about the biological function of Dnd proteins, especially the smallest protein, DndE, in the PT modification pathway. DndE was reported to be a DNA-binding protein with a preference for nicked dsDNA in vitro; the binding of DndE to DNA occurs via six positively charged lysine residues on its surface. The substitution of these key lysine residues significantly decreased the DNA binding affinities of DndE proteins to undetectable levels. In this study, we conducted site-directed mutagenesis of dndE on a plasmid and measured DNA PT modifications under physiological conditions by mass spectrometry. We observed distinctive differences from the in vitro binding assays. Several mutants with lysine residues mutated to alanine decreased the total frequency of PT modifications, but none of the mutants completely eliminated PT modification. Our results suggest that the nicked dsDNA-binding capacity of DndE may not be crucial for PT modification and/or that DndE may have other biological functions in addition to binding to dsDNA.
منابع مشابه
Interactions of Dnd proteins involved in bacterial DNA phosphorothioate modification
DNA phosphorothioation (PT) is the first discovered physiological DNA backbone modification, in which a non-bridging oxygen atom of the phosphodiester bond is replaced with a sulfur atom in Rp (rectus for plane) configuration. PT modification is governed by a highly conserved gene cluster dndA/iscS-dndBCDE that is widespread across bacterial and archaeal species. However, little is known about ...
متن کاملPurification, crystallization and preliminary X-ray analysis of the DndE protein from Salmonella enterica serovar Cerro 87, which is involved in DNA phosphorothioation.
The phenomenon of DNA phosphorothioation (DNA sulfur modification) is widespread among prokaryotes and may serve as a mechanism to restrict gene transfer among bacteria. DndE is one of five essential proteins that are required for the DNA phosphorothioation process. However, its exact biochemical role in sulfur modification of DNA remains unclear. In this study, the DndE protein homologue from ...
متن کاملDietary phytate lowers K-ras mutational frequency, decreases DNA-adduct and hydroxyl radical formation in azoxymethane-induced colon cancer
Objective(s): Dietary phytate is known to protect against azoxymethane (AOM)-induced preneoplastic lesions. The present study was designed to determine whether dietary phytate affects mutation frequency in colon epithelial cells challenged with azoxymethane in vivo, through lowering the formation of O6-methyl guanosine (O6-MeG) and 8-hydroxy deoxyguanosine (8-OHdG) ad...
متن کاملFrom the Flavobacterium genus to the phylum Bacteroidetes: genomic analysis of dnd gene clusters.
Phosphorothioate modification of DNA and the corresponding DNA degradation (Dnd) phenotype that occurs during gel electrophoresis are caused by dnd genes. Although widely distributed among Bacteria and Archaea, dnd genes have been found in only very few, taxonomically unrelated, bacterial species so far. Here, we report the presence of dnd genes and their associated Dnd phenotype in two Flavoba...
متن کاملPathological phenotypes and in vivo DNA cleavage by unrestrained activity of a phosphorothioate-based restriction system in Salmonella.
Prokaryotes protect their genomes from foreign DNA with a diversity of defence mechanisms, including a widespread restriction-modification (R-M) system involving phosphorothioate (PT) modification of the DNA backbone. Unlike classical R-M systems, highly partial PT modification of consensus motifs in bacterial genomes suggests an unusual mechanism of PT-dependent restriction. In Salmonella ente...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014